Appliance-Level Anomaly Detection by Using Control Charts and Artificial Neural Networks with Power Profiles

Author:

Apaydin-Özkan HanifeORCID

Abstract

Nowadays, the development of the Internet of Things (IoT) concept has increased the interest in some technologies, one of which is the detection of anomalies in home appliances before they occur. In this work, in order to contribute to the works that use appliance power profiles for anomaly detection, a novel Appliance Monitoring and Anomaly Detection System (AM-ADS) is presented. AM-ADS consists of a main controller, a database, IoT-based communication units, home appliances, and power measurement units (smart plugs or special measurement equipments) mounted on appliances. In AM-ADS, a new Control Chart (CC) based method, for the cases that a limited number of historical power profiles are available; and a new Artificial Neural Network (ANN) based method, for the cases that a sufficient number of historical power profiles of each anomaly free and anomalous situations are available, are used according to the developed rule-based AM-ADS procedure to maximize the advantages and to eliminate the disadvantages of these methods as much as possible. According to the AM-ADS procedure, power consumptions of appliances, which provide meaningful information about the health of appliances, are measured during their operations and the corresponding power profiles are created. Active power, power factor, and operation duration features of power profiles are considered as decisive control parameters and different characteristics of these parameters are used as inputs for CC and ANN-based methods. The efficiency and performance of AM-ADS are validated by application case studies, where the ability to detect anomalies varies between 94.56% and 99.03% when a limited number of historical data is available; and the ability to detect and classify anomalies varies between 96.34% and 99.45% when a sufficient number of historical data is available.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anomaly detection framework for IoT-enabled appliances using machine learning;Cluster Computing;2024-04-30

2. Abnormal Operations Detection of Residential Electric Appliances using Non-Intrusive Load Monitoring;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

3. TEKNOLOJİK GELİŞMELER IŞIĞINDA ENDÜSTRİ MÜHENDİSLİĞİNİN GELECEĞİ;Eskişehir Osmangazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi;2023-12-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3