Metaheuristic Optimisation Algorithms for Tuning a Bioinspired Retinal Model

Author:

Crespo-Cano Rubén,Cuenca-Asensi SergioORCID,Fernández Eduardo,Martínez-Álvarez

Abstract

A significant challenge in neuroscience is understanding how visual information is encoded in the retina. Such knowledge is extremely important for the purpose of designing bioinspired sensors and artificial retinal systems that will, in so far as may be possible, be capable of mimicking vertebrate retinal behaviour. In this study, we report the tuning of a reliable computational bioinspired retinal model with various algorithms to improve the mimicry of the model. Its main contribution is two-fold. First, given the multi-objective nature of the problem, an automatic multi-objective optimisation strategy is proposed through the use of four biological-based metrics, which are used to adjust the retinal model for accurate prediction of retinal ganglion cell responses. Second, a subset of population-based search heuristics—genetic algorithms (SPEA2, NSGA-II and NSGA-III), particle swarm optimisation (PSO) and differential evolution (DE)—are explored to identify the best algorithm for fine-tuning the retinal model, by comparing performance across a hypervolume metric. Nonparametric statistical tests are used to perform a rigorous comparison between all the metaheuristics. The best results were achieved with the PSO algorithm on the basis of the largest hypervolume that was achieved, well-distributed elements and high numbers on the Pareto front.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3