Study on the Hydrodynamic Performance and Stability Characteristics of Oil-Water Annular Flow through a 90° Elbow Pipe

Author:

Yin Xiaoyun12,Li Jing12,Wen Ming12,Dong Xijun12,You Xiangyang12,Su Ming12,Zeng Pengsheng12,Jing Jiaqiang34,Sun Jie34ORCID

Affiliation:

1. Safety, Environment and Technology Supervision Research Institute of PetroChina Southwest Oil and Gas Field Company, Chengdu 610041, China

2. Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 610041, China

3. School of Oil & Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China

4. Oil & Gas Fire Protection Key Laboratory of Sichuan Province, Chengdu 611731, China

Abstract

The transportation of highly viscous oil surrounded by water annulus has been recognized as a feasible option in terms of low-energy consumption and high efficiency. During the process of heavy oil delivery, the problem of pipe fittings is inevitably encountered, and the most common one is elbow assembly. In this present study, simulations for oil-water core annular flow (CAF) through a 90° elbow pipe were performed by computational fluid dynamics (CFD) based on VOF, standard k-ε, and CSF models. Simulation results were consistent with experimental data, which verifies the validity and practicability of the proposed model. The effects of inlet water fraction, superficial velocities of oil and water, oil properties (density and viscosity), and pipe geometry-related parameters (diameter ratio, wall roughness, and surface wettability) on the hydrodynamic performance and stability characteristics were explored. It is revealed that inlet water fraction, superficial velocities of oil and water, oil properties, and pipe geometric parameters do influence the volume fraction of oil and the stability of the water ring. Furthermore, the oil core may adhere to the downstream of the 90° elbow pipe under certain operational conditions. The results could provide a reference for the design of 90° elbow pipe structures and the optimization of operation parameters.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3