Design of an Optimal Adoptive Fault Ride through Scheme for Overcurrent Protection of Grid-Forming Inverter-Based Resources under Symmetrical Faults

Author:

Islam Saif Ul1,Kim Soobae1

Affiliation:

1. Department of Electrical Engineering, School of Electronic and Electrical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

Abstract

As the integration of inverter-based resources (IBRs) is rapidly increasing in regard to the existing power system, switching from grid-following (GFL) to grid-forming (GFM) inverter control is the solution to maintain grid resilience. However, additional overcurrent protection, especially during fault transition, is required due to limited overcurrent capability and the high magnitude of spikes during fault recovery in IBRs, specifically in the GFM control mode. Furthermore, the power system stability should not be compromised by the employment of additional fault ride through (FRT) schemes. This article presents the design and implementation of an adoptive fault ride through (FRT) scheme for grid-forming inverters under symmetrical fault conditions. The proposed adoptive FRT scheme is comprised of two cascaded power electronic-based circuits, i.e., fault current ride through and a spikes reactor. This adoptive FRT scheme optimizes the fault variables during the fault time and suppresses the fault clearing spikes, without affecting system stability. A three-bus inverter-based grid-forming model is used in MATLAB/Simulink for the implementation of the proposed scheme. Further, a conventionally used FRT scheme, which includes fault current reactors, is simulated in the same test environment for justification of the proposed adoptive scheme. The adoptive FRT scheme is simulated for both time domain and frequency domain to analyze the response of harmonic distortion with the suppression of the fault current. Moreover, the proposed scheme is also simulated under the GFL mode of IBRs to justify the reliability of the scheme. The overall simulation results and performance evaluation indices authenticate the optimal, fault tolerant, harmonic, and spike-free behavior of the proposed scheme at both the AC and DC side of the grid-forming inverters.

Funder

Ministry of Education, Republic of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3