Assessing the Relevance of Information Sources for Modelling Student Performance in a Higher Mathematics Education Course

Author:

Pérez-Suay Adrián1ORCID,Ferrís-Castell Ricardo2,Van Vaerenbergh Steven3ORCID,Pascual-Venteo Ana B.4ORCID

Affiliation:

1. Departament de Didàctica de la Matemàtica, Universitat de València, Av. Tarongers 4, 46022 València, Spain

2. Departament d’Informàtica, Universitat de València, Avinguda de l’Universitat, 46100 Burjassot, Spain

3. Departamento de Matemáticas, Estadística y Computación, Universidad de Cantabria, Av. de los Castros 48, 39005 Santander, Spain

4. Laboratori de Processat d’Imatges, Universitat de València, Catedràtic Agustín Escardino Benlloch, 9, 46980 Paterna, Spain

Abstract

In recent years, most educational institutions have integrated digital technologies into their teaching–learning processes. Learning Management Systems (LMS) have gained increasing popularity, particularly in higher education, due to their ability to manage teacher–student interactions. These systems store valuable information which describes students’ behaviour throughout a course. These data can be utilised to construct statistical models that represent learner behaviour within an online LMS platform. In this study, we aim to compare different sources of information and, more ambitiously, to provide insights into which source of information is most valuable for inferring student performance. The considered sets of information come from (i) the Moodle LMS; (ii) socio-economic data about students acquired from a survey; and (iii) subject marks achieved throughout the course. To determine the relevance of the incorporated information, we use artificial intelligence (AI) methods, and we report the importance measures of four state-of-the-art methods. Our findings indicate that the selected methodology is suitable for making inferences about student performance while also shedding light on model decisions through explainability.

Funder

Regional Government of València

Publisher

MDPI AG

Subject

Public Administration,Developmental and Educational Psychology,Education,Computer Science Applications,Computer Science (miscellaneous),Physical Therapy, Sports Therapy and Rehabilitation

Reference29 articles.

1. González, H.B., and Kuenzi, J.J. (2012). Science, Technology, Engineering, and Mathematics (STEM) Education: A Primer, Congressional Research Service. Technical Report.

2. The effect of blended learning on student performance at course-level in higher education: A meta-analysis;Vo;Stud. Educ. Eval.,2017

3. Tatnall, A. (2019). Encyclopedia of Education and Information Technologies, Springer International Publishing.

4. Almaraz-Menéndez, F., Maz-Machado, A., López-Esteban, C., and Almaraz-López, C. (2022). Strategy, Policy, Practice, and Governance for AI in Higher Education Institutions, IGI Global.

5. Early prediction of undergraduate Student’s academic performance in completely online learning: A five-year study;Romero;Comput. Hum. Behav.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3