Helping Students Become Proficient Problem Solvers Part II: An Example from Waves

Author:

Maries Alexandru1ORCID,Singh Chandralekha2ORCID

Affiliation:

1. Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA

2. Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA

Abstract

Helping students become proficient problem solvers is one of the primary goals of physics courses. In Part I of this article, we summarized the vast research on problem solving relevant for physics instruction, and here we discuss a concrete example of problem solving in the context of waves from introductory physics. The goal of this research was to investigate how drawing diagrams affects students’ problem-solving performance. An introductory class was broken up into three recitations which received different instructions related to diagrams on their weekly quizzes: one group was provided a diagram, another was asked to draw one, and the third was the comparison group which was given no instructions about diagrams. We find that students who were provided a diagram performed significantly worse than students in the other two groups. Furthermore, we find that irrespective of the condition, students who drew diagrams as part of the problem-solving process performed better overall, despite primarily using a mathematical approach to solving the problem. Lastly, we conducted think-aloud interviews with students who solved the same problem to further understand their solution approaches as well as how drawing a diagram is useful even in situations where a primarily mathematical approach is used.

Publisher

MDPI AG

Subject

Public Administration,Developmental and Educational Psychology,Education,Computer Science Applications,Computer Science (miscellaneous),Physical Therapy, Sports Therapy and Rehabilitation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3