Bioinformatics-Based Adaptive System towards Real-Time Dynamic E-learning Content Personalization

Author:

Mwambe Othmar OthmarORCID,Tan Phan XuanORCID,Kamioka Eiji

Abstract

Adaptive Educational Hypermedia Systems (AEHS) play a crucial role in supporting adaptive learning and immensely outperform learner-control based systems. AEHS’ page indexing and hyperspace rely mostly on navigation supports which provide the learners with a user-friendly interactive learning environment. Such AEHS features provide the systems with a unique ability to adapt learners’ preferences. However, obtaining timely and accurate information for their adaptive decision-making process is still a challenge due to the dynamic understanding of individual learner. This causes a spontaneous changing of learners’ learning styles that makes hard for system developers to integrate learning objects with learning styles on real-time basis. Thus, in previous research studies, multiple levels navigation supports have been applied to solve this problem. However, this approach destroys their learning motivation because of imposing time and work overload on learners. To address such a challenge, this study proposes a bioinformatics-based adaptive navigation support that was initiated by the alternation of learners’ motivation states on a real-time basis. EyeTracking sensor and adaptive time-locked Learning Objects (LOs) were used. Hence, learners’ pupil size dilation and reading and reaction time were used for the adaption process and evaluation. The results show that the proposed approach improved the AEHS adaptive process and increased learners’ performance up to 78%.

Publisher

MDPI AG

Subject

Public Administration,Developmental and Educational Psychology,Education,Computer Science Applications,Computer Science (miscellaneous),Physical Therapy, Sports Therapy and Rehabilitation

Reference43 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3