Foresight Methodologies in Responsible GenAI Education: Insights from the Intermedia-Lab at Complutense University Madrid

Author:

Azcárate Asunción López-Varela1ORCID

Affiliation:

1. Department of English Studies, Faculty of Philology, Universidad Complutense Madrid, 28040 Madrid, Spain

Abstract

This study, conducted at Complutense Intermedia-Lab, employs a dual approach to explore university students’ use of Generative AI (GenAI), combining a survey with foresight methodologies (Sci-fi prototyping). The initial survey gathers baseline data on students’ experiences, attitudes, and concerns regarding GenAI, providing a comprehensive understanding of current practices among university students in Spain. This empirical foundation informs subsequent Sci-fi prototyping sessions, where students creatively envision future scenarios, fostering futurist thinking and deeper engagement. By integrating principles of Responsible Research and Innovation (RRI), this approach facilitates a nuanced exploration of GenAI’s potential impacts on education. The incorporation of both quantitative data collection and qualitative foresight methods in this study serves to navigate challenges and level opportunities of promoting the ethical and inclusive incorporation of GenAI in Higher Education, ensuring that future innovations align with societal values and needs.

Funder

Universidad Complutense de Madrid

Publisher

MDPI AG

Reference52 articles.

1. European Commission High-Level Expert Group on AI (2024, June 10). Ethics Guidelines for Trustworthy AI. Available online: https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-ai.

2. Flechtheim, O. (1966). History and Futurology, Haim.

3. Fowles, J. (1978). Handbook of Futures Research, Greenwood.

4. Godet, M. (1991). From Anticipation to Action: A Handbook of Strategic Prospective, UNESCO Future-Oriented Studies Programme.

5. Futures studies: From individual to social capacity;Slaughter;Futures,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3