How Concept Maps with and without a List of Concepts Differ: The Case of Statistics

Author:

Kapuza AnastasiaORCID

Abstract

Concept mapping is a popular tool for knowledge structure assessment. In recent years, both the amount of research about concept maps and their measurement ability have grown. It has been shown that concept maps with different types of tasks, for instance, links between concepts given or selected by a respondent, provide information about the different aspects of students’ knowledge structure. This study explores features of concept mapping with and without a list of concepts. At first, eleven masters students constructed concept maps with a topic on statistical data analysis and, after three weeks, repeated the task with the same topic and a predefined list of concepts. Both types of concept maps were evaluated using traditional scoring indicators and indicators from the network analysis. All indicators were tested for significant differences, and then the content of these maps was analysed. Results show that the list of concepts forced respondents to construct more connective maps, which is related to a more developed knowledge structure. Moreover, it is easier for them, when including even abstract concepts, to define their role in the domain. However, respondents use concepts and group them in different ways depending on the instruction. It seems that respondents feel a “list stress”, which leads to differences in the content. These findings demonstrate the possibilities of using different concept mapping tasks for learning and assessment.

Publisher

MDPI AG

Subject

Public Administration,Developmental and Educational Psychology,Education,Computer Science Applications,Computer Science (miscellaneous),Physical Therapy, Sports Therapy and Rehabilitation

Reference58 articles.

1. Educational Psychology: A Cognitive View;Ausubel,1978

2. Learning How to Learn;Novak,1999

3. Concept mapping: A useful tool for science education

4. Learning With Concept and Knowledge Maps: A Meta-Analysis

5. Visible Learning: A Synthesis of over 800 Meta-Analyses Relating to Achievement;Hattie,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3