Mathematical Modelling Abilities of Artificial Intelligence Tools: The Case of ChatGPT

Author:

Spreitzer Carina1ORCID,Straser Oliver2ORCID,Zehetmeier Stefan1,Maaß Katja2

Affiliation:

1. Institute of Instructional and School Development, University of Klagenfurt, Sterneckstraße 15, 9020 Klagenfurt, Austria

2. International Centre for STEM Education (ICSE), University of Education Freiburg, Kunzenweg 21, 79117 Freiburg, Germany

Abstract

This work explores the mathematical modelling capabilities of various iterations of ChatGPT, focusing on their performance across tasks of differing complexity and openness. The study examines the abilities of GPT-3.5, GPT-4.0, and a more instructed version, GPT-MM, in multiple scenarios. It is observed that all versions demonstrate basic mathematical problem-solving skills. However, their effectiveness varies with increasing task complexity. While GPT-4.0 and GPT-MM show marginal improvements in providing detailed solutions, significant challenges persist, especially in moderate to complex modelling contexts where comprehending the nuances of tasks becomes challenging. Additionally, the study suggests that the openness of modelling tasks has a limited impact on performance, highlighting that mathematical and contextual complexities play more critical roles. The implications of these observations are discussed in terms of potential enhancements to teaching methodologies and the integration of AI tools like GPT in educational settings. This reiterates the importance of further research to fully understand the capabilities and limitations of AI tools and ensure their effective use in education.

Publisher

MDPI AG

Reference72 articles.

1. Authentic Complex Modelling Problems in Mathematics Education;Damlamian;Educational Interfaces between Mathematics and Industry,2013

2. ICMI Study 14: Applications and modelling in mathematics education—Discussion document;Blum;Educ. Stud. Math.,2002

3. Maaß, K., and Gurlitt, J. (February, January 28). Designing a Teacher Questionnaire to Evaluate Professional Development in Modelling. Proceedings of the CERME 6, Lyon, France. Available online: http://www.inrp.fr/editions/editions-electroniques/cerme6/.

4. Powerful tasks: A contribution to a high level of acting and reflecting in mathematics instruction;Krainer;Educ. Stud. Math.,1993

5. Hischer, H. (2000). Why Sometimes Cats Fall from the Sky … or … about Good and Bad Models [Warum manchmal Katzen vom Himmel fallen … oder … von Guten und von Schlechten Modellen]. Model Building, Computers and Mathematics Instruction [Modellbildung Computer und Mathematikunterricht], Franzbecker.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3