Students’ Epistemological Framings When Solving an Area Problem of a Degenerate Triangle: The Influence of Presence and Absence of a Drawing

Author:

Juárez-Ruiz Estela1,Sliško Josip1ORCID

Affiliation:

1. Faculty of Mathematical and Physical Sciences, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico

Abstract

This study explores the epistemological framings of undergraduate students when solving an area problem of a degenerate triangle, without or with a triangle drawing. Through mixed research with a triangulation design, the resolution processes and responses of students were analyzed. The aim was to analyze how students’ epistemological framing changes during the problem-solving process depending on whether the task contains the drawing of the triangle or not. Quantitative results show significant differences between students who solve the problem without a triangle drawing and those who do. Qualitative results evidence that students who solved the problem with the drawing established an initial epistemological framing that contained an “obvious fact”: the non-zero area of the triangle. They hardly modified this epistemological framing during the solving process, forcing the response to be a positive number. In contrast, students who solved the problem without the drawing easily modified their initial epistemological framing by observing that the area of the triangle was zero. Students’ perceptions of the level of difficulty of the problem are discussed, too.

Funder

Postgraduate studies in mathematical education at the Faculty of Physical and Mathematical Sciences at Benemérita Universidad Autónoma de Puebla

Publisher

MDPI AG

Reference44 articles.

1. Acerbi, F., and Vitrac, B. (2014). Metrica Héron d’Alesandrie, Fabrizio Serra Editore.

2. Bruins, E.M. (1964). Codex Constantinopolitanus, E. J. Brill. Part Three. Translation and Commentary.

3. Sánchez, E. (2022). Test de Razonamiento Lógico y Test de Reflexión Cognitiva Como Posibles Predictores del Desempeño de los Estudiantes en la Resolución de Problemas Matemáticos. [Master’s Thesis, Benemérita Universidad Autónoma de Puebla].

4. Dugopolski, M. (2002). Precalculus with Limits: Functions and Graphs, Addison-Wesley.

5. Fisher, R.C., Riner, J., Silver, J., and Waits, B.K. (1975). Introductory Mathematic: A Prelude to Calculus, Charles E. Merrill Publishing Company.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3