Abstract
Mobile social networks suffer from an unbalanced traffic load distribution due to the heterogeneity in mobility of nodes (humans) in the network. A few nodes in these networks are highly mobile, and the proposed social-based routing algorithms are likely to choose these most “social” nodes as the best message relays. Finally, this could lead to inequitable traffic load distribution and resource utilisation, such as faster battery drain and/or storage consumption of the most (socially) popular nodes. We propose a framework called Traffic Load Distribution Aware (TraLDA) to improve traffic load balancing across network nodes. We present a novel method for calculating node popularity which takes into account both node inherent and social-relations popularity. The former is purely determined by the node’s sociability level in the network, and in TraLDA is computed using the Kalman prediction which considers the node’s periodicity behaviour. However, the latter takes the benefit of interactions with more popular neighbours (acquaintances) to boost the popularity of lower (social) level nodes. Using extensive simulations in the Opportunistic Network Environment (ONE) driven by real human mobility scenarios, we show that our proposed strategy enhances the traffic load distribution fairness of the classical, yet popular social-aware routing algorithms BubbleRap and SimBet without negatively impacting the overall delivery performance.
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献