Influence of Dielectric Barrier Discharge Treatment on Surface Structure of Polyoxymethylene Fiber and Interfacial Interaction with Cement

Author:

Zhang WeiORCID,Xu Xiao,Wei Fayun,Zou Xueshu,Zhang Yu

Abstract

Polyoxymethylene (POM) fiber was treated with atmospheric dielectric barrier discharge (DBD) plasma to enhance the surface activity of the fiber and interfacial interaction with cement. The physical and chemical properties of samples with different DBD plasma treatment durations were tested and analyzed. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed that the surface roughness of the sample increased significantly as a result of the DBD plasma treatment. Fourier transform infrared spectrophotometer (FTIR) and X-ray photoelectron spectroscopy (XPS) analysis showed that a large number of –COH and –COOH groups were formed on the surface of the sample after DBD plasma treatment. The hydrophilicity of the POM fiber was greatly improved with the increase in the treatment duration. When the treatment duration was longer than 120 s, the fiber surface contact angle decreased from 90° to 43°. The DBD plasma treatment resulted in a decrease in the tensile strength of the POM fiber, but the increase in the amount of –COH and –COOH on the surface of the POM fiber and the increase in the roughness resulted in an increase in the fiber pull-out bonding strength in cement from 2.15 N to 4.68 N.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3