Author:
Li Yange,Huang Shuangfei,Li Jiaying,Huang Jianling,Wang Weidong
Abstract
Landslide Susceptibility Assessment (LSA) is a fundamental component of landslide risk management and a substantial area of geospatial research. Previous researchers have considered the spatial non-stationarity relationship between landslide occurrences and Landslide Conditioning Factors (LCFs) as fixed effects. The fixed effects consider the spatial non-stationarity scale between different LCFs as an average value, which is represented by a single bandwidth in the Geographically Weighted Regression (GWR) model. The present study analyzes the non-stationarity scale effect of the spatial relationship between LCFs and landslides and explains the influence of factor correlation on the LSA. A Principal-Component-Analysis-based Multiscale GWR (PCAMGWR) model is proposed for landslide susceptibility mapping, in which hexagonal neighborhoods express spatial proximity and extract LCFs as the model input. The area under the receiver operating characteristic curve and other statistical indicators are used to compare the PCAMGWR model with other GWR-based models and global regression models, and the PCAMGWR model has the best prediction effect. Different spatial non-stationarity scales are obtained and improve the prediction accuracy of landslide susceptibility compared to a single spatial non-stationarity scale.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献