Dynamic Modeling of Crop–Soil Systems to Design Monitoring and Automatic Irrigation Processes: A Review with Worked Examples

Author:

Lopez-Jimenez JorgeORCID,Vande Wouwer AlainORCID,Quijano NicanorORCID

Abstract

The smart use of water is a key factor in increasing food production. Over the years, irrigation has relied on historical data and traditional management policies. Control techniques have been exploited to build automatic irrigation systems based on climatic records and weather forecasts. However, climate change and new sources of information motivate better irrigation strategies that might take advantage of the new sources of information in the spectrum of systems and control methodologies in a more systematic way. In this connection, two open questions deserve interest: (i) How can one deal with the space–time variability of soil conditions? (ii) How can one provide robustness to an irrigation system under unexpected environmental change? In this review, the different elements of an automatic control system are described, including the mathematical modeling of the crop–soil systems, instrumentation and actuation, model identification and validation from experimental data, estimation of non-measured variables and sensor fusion, and predictive control based on crop–soil and weather models. An overview of the literature is given, and several specific examples are worked out for illustration purposes.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3