Abstract
Among the third-generation Al-Li alloys, AA2198 stands out for its lower density, formability and increased stiffness, being suitable for use in aircraft fuselage sheets and other inner structures in order to reduce weight and improve performance. An important topic related to damage tolerant structures is the development of techniques to retard fatigue crack propagation, such as the localized heating by a laser source. The aim of the present work was to find the most suitable parameters for the production of laser heating lines in 2198-T851 alloy sheets in order to reduce the fatigue crack growth rate in this material. Laboratory tests using C(T) specimens under two loading conditions (R = 0.1 and 0.5) provided a useful dataset on the laser heated material. The experimental results indicate a 200 W laser beam power at treatment speeds of 1 and 10 mm/s was sufficient to retard crack growth in the current setup. The more expressive results were obtained for 200 W laser power with a speed of 1 mm/s and cyclic loading with stress ratio R = 0.1.
Funder
São Paulo Research Foundation
Subject
General Materials Science,Metals and Alloys
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献