Abstract
In the previous research works, ZnAl2O4 material was considered as one of the solutions for the decopperization process of molten steels; up to 33% of decopperization efficiency was reported by utilising the ZnAl2O4 filter. In order to verify the decopperization possibility of ZnAl2O4 materials, iron-based alloys with various copper and carbon contents were interacted with ZnAl2O4 substrates in a heating microscope under an argon gas atmosphere at 1600 °C. Fe-Cu alloys were found to react with the ZnAl2O4 substrate during the interaction process, and a reaction layer with a complex composition around the alloy droplet was formed; however, Cu was not detected in the reaction layer. Cu was later found infiltrated inside of the ZnAl2O4 substrates. Furthermore, the Cu-Zn compounds were detected when the copper content in Fe-Cu alloys was 10 wt% Cu. After interaction experiments, copper was decreased in all cases. Thereby, the copper evaporation and infiltration into the ZnAl2O4 substrate were considered as the reasons for copper loss. Moreover, oxygen dissolved in melt was found to have a great effect on the copper evaporation process.
Funder
Deutsche Forschungsgemeinschaft
Subject
General Materials Science,Metals and Alloys
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献