Verification of Possibility of Molten Steels Decopperization with ZnAl2O4

Author:

Wei XingwenORCID,Dudczig Steffen,Chebykin Dmitry,Aneziris Christos G.,Volkova Olena

Abstract

In the previous research works, ZnAl2O4 material was considered as one of the solutions for the decopperization process of molten steels; up to 33% of decopperization efficiency was reported by utilising the ZnAl2O4 filter. In order to verify the decopperization possibility of ZnAl2O4 materials, iron-based alloys with various copper and carbon contents were interacted with ZnAl2O4 substrates in a heating microscope under an argon gas atmosphere at 1600 °C. Fe-Cu alloys were found to react with the ZnAl2O4 substrate during the interaction process, and a reaction layer with a complex composition around the alloy droplet was formed; however, Cu was not detected in the reaction layer. Cu was later found infiltrated inside of the ZnAl2O4 substrates. Furthermore, the Cu-Zn compounds were detected when the copper content in Fe-Cu alloys was 10 wt% Cu. After interaction experiments, copper was decreased in all cases. Thereby, the copper evaporation and infiltration into the ZnAl2O4 substrate were considered as the reasons for copper loss. Moreover, oxygen dissolved in melt was found to have a great effect on the copper evaporation process.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference35 articles.

1. Opportunities and Dangers of Using Residual Elements in Steels: A Literature Survey;Rod,2006

2. Copper and tin in steel scrap recycling;Savov;Mat. Geoenviron.,2003

3. Effect of copper on edge cracking behavior and microstructure of rolled austenitic stainless steel plate

4. How Will Copper Contamination Constrain Future Global Steel Recycling?

5. Slag for decopperization and sulphur control in molten steel

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3