Quantum Distance Measures Based upon Classical Symmetric Csiszár Divergences

Author:

Bussandri Diego G.1ORCID,Osán Tristán M.23ORCID

Affiliation:

1. Instituto de Física La Plata (IFLP), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Diagonal 113 e/63 y 64, La Plata B1900, Argentina

2. Instituto de Física Enrique Gaviola (IFEG), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Av. Medina Allende s/n, Córdoba X5000HUA, Argentina

3. Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Av. Medina Allende s/n, Ciudad Universitaria, Córdoba X5000HUA, Argentina

Abstract

We introduce a new family of quantum distances based on symmetric Csiszár divergences, a class of distinguishability measures that encompass the main dissimilarity measures between probability distributions. We prove that these quantum distances can be obtained by optimizing over a set of quantum measurements followed by a purification process. Specifically, we address in the first place the case of distinguishing pure quantum states, solving an optimization of the symmetric Csiszár divergences over von Neumann measurements. In the second place, by making use of the concept of purification of quantum states, we arrive at a new set of distinguishability measures, which we call extended quantum Csiszár distances. In addition, as it has been demonstrated that a purification process can be physically implemented, the proposed distinguishability measures for quantum states could be endowed with an operational interpretation. Finally, by taking advantage of a well-known result for classical Csiszár divergences, we show how to build quantum Csiszár true distances. Thus, our main contribution is the development and analysis of a method for obtaining quantum distances satisfying the triangle inequality in the space of quantum states for Hilbert spaces of arbitrary dimension.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference57 articles.

1. Wilde, M.M. (2017). Quantum Information Theory, Cambridge University Press. [2nd ed.].

2. Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizitat von Markoffschen Ketten;Magyar. Tud. Akad. Mat. Kutató Int. Közl,1963

3. A general class of coefficients of divergence of one distribution from another;Ali;J. R. Statist. Soc. Ser. B,1966

4. Deza, M., and Deza, E. (2016). Encyclopedia of Distances, Springer. [4th ed.].

5. Measures of trajectory ensemble disparity in nonequilibrium statistical dynamics;Crooks;J. Stat. Mech.,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3