Effect of Different Smoke Vent Layouts on Smoke and Temperature Distribution in Single-Side Multi-Point Exhaust Tunnel Fires: A Case Study

Author:

Tao Liangliang,Zeng Yanhua

Abstract

In this paper, a numerical model verified by a 1:10 small-scale model test was used to study the effect of different smoke vent layouts on fire characteristics and smoke exhaust efficiency. The results show that the total smoke spread length is shortest when four smoke vents are opened near the fire source. If there are more than four smoke vents, some of them will only inhale fresh air rather than smoke. More seriously, some smoke vents will promote the spread of toxic smoke farther. Under different smoke vent layout schemes, the maximum temperature shows the same change trend with the increase in smoke exhaust volume (first increasing and then decreasing). When there are four smoke vents, the temperature field is in a good range compared with other schemes. If four smoke vents are opened, the total smoke exhaust efficiency is highest, and exhaust rate has little influence on total exhaust efficiency. Total smoke exhaust efficiency of the tunnel is more than 93.7% under different exhaust volumes, and the maximum difference of total smoke exhaust efficiency is less than 1.5% under different exhaust volume of Case “4”. The exhaust volume has little influence on temperature decay beneath the ceiling, and a temperature attenuation model of a point exhaust tunnel with four smoke vents was proposed. For the single-side point exhaust tunnels, the number of smoke vents near the exhaust fan side shall not be more than that on the other side. Four smoke vents shall be opened in case of fire and the exhaust volume is 220 m³/s with HRR of 30 MW.

Funder

National Natural Foundation of China

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3