Visual Reconstruction of Ancient Coins Using Cycle-Consistent Generative Adversarial Networks

Author:

Zachariou Marios,Dimitriou NeofytosORCID,Arandjelović OgnjenORCID

Abstract

In this paper, our goal is to perform a virtual restoration of an ancient coin from its image. The present work is the first one to propose this problem, and it is motivated by two key promising applications. The first of these emerges from the recently recognised dependence of automatic image based coin type matching on the condition of the imaged coins; the algorithm introduced herein could be used as a pre-processing step, aimed at overcoming the aforementioned weakness. The second application concerns the utility both to professional and hobby numismatists of being able to visualise and study an ancient coin in a state closer to its original (minted) appearance. To address the conceptual problem at hand, we introduce a framework which comprises a deep learning based method using Generative Adversarial Networks, capable of learning the range of appearance variation of different semantic elements artistically depicted on coins, and a complementary algorithm used to collect, correctly label, and prepare for processing a large numbers of images (here 100,000) of ancient coins needed to facilitate the training of the aforementioned learning method. Empirical evaluation performed on a withheld subset of the data demonstrates extremely promising performance of the proposed methodology and shows that our algorithm correctly learns the spectra of appearance variation across different semantic elements, and despite the enormous variability present reconstructs the missing (damaged) detail while matching the surrounding semantic content and artistic style.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3