An Isolated Three-Port Power Converter with 2C3L and 2C2L Resonant Circuits

Author:

Chang Yong-Nong1ORCID,Yan Yih-Her1ORCID,Huang Sheng-Min1

Affiliation:

1. Department of Electrical Engineering, National Formosa University, Yunlin County, Huwei 632, Taiwan

Abstract

This study proposed an isolated three-port bidirectional resonant converter that combines 2C3L and 2C2L resonant circuits for application in power dispatching. The proposed converter improves the bidirectional power dispatch capabilities of conventional three-port converters and utilizes different resonant converters to complete the energy charge–discharge through ports of different voltage levels. By modulating the frequency alone, bidirectional power regulation and electrical isolation were achieved among the three ports with different voltage levels. The converter involves the use of resonance techniques to enable the power switch to perform soft switching during bidirectional power transmissions, reducing switching loss and electromagnetic interference. The system control of the circuit was a Texas Instruments TMS320F28335 microcontroller. By simulating a DC grid port with a fixed voltage of 400 V, a vehicle battery port with a variable voltage of 280–403 V, and a battery charging port with a variable voltage of 180–213 V, an experimental platform with a rated output of 3 kW was built to determine the accuracy of the proposed theoretical analysis and design method.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference18 articles.

1. A V2G Integrated Battery Charger Based on an Open End Winding Multilevel Configuration;Foti;IEEE Open J. Ind. Appl.,2020

2. Multifunction Capability of SiC Bidirectional Portable Chargers for Electric Vehicles;Wang;IEEE J. Emerg. Sel. Top. Power Electron.,2021

3. A Compact Lithium-Ion Battery Charger for Low-Power Applications;Veirano;IEEE Trans. Circuits Syst. II Express Briefs,2022

4. A Home Energy Management System with Renewable Energy and Energy Storage Utilizing Main Grid and Electricity Selling;Dinh;IEEE Access,2020

5. Federated Reinforcement Learning for Energy Management of Multiple Smart Homes with Distributed Energy Resources;Lee;IEEE Trans. Ind. Inform.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3