The Structural and Electromagnetic Comparative Analysis of the Bifilar-Meander-Type Winding Method of Superconducting DC Circuit Breaker

Author:

Park Sang-Yong1ORCID,Kim Geon-Woong1,Jeong Ji-Sol1,Choi Hyo-Sang1

Affiliation:

1. Department of Electrical Engineering, Chosun University, Gwangju 61452, Republic of Korea

Abstract

As the utilization of DC systems increases worldwide, the importance of DC cutoff technology is increasing. We proposed a hybrid DC cutoff technology combining an SFCL (superconducting fault-current-limiter) and a mechanical DC circuit breaker. This model can perform a fault-current-limiting operation through the quenching of the SFCL and a breaking operation through an artificial cutoff zero point of a mechanical DC circuit breaker. In particular, the SFCL is responsible for the growth of the initial fault current according to the DC characteristics. As the DC system’s supply and demand increase, the DC system’s capacity also increases. Therefore, the fault-current-limiting capability of the SFCL should be increased according to the increasing DC system breaking capacity. The fault-current-limiting capability can be increased by increasing the superconducting wires used in the SFCL. Current commercially available SFCLs use bifilar-helical-type and bifilar-spiral-type winding methods. These have the disadvantage of increased volume with increased capacity. To compensate for these disadvantages, we proposed a bifilar-meander-type winding method. In this paper, a new bifilar-meander-type winding method was introduced. In addition, the structural and electromagnetic parts of the existing winding method and the bifilar-meander-type winding method were compared and analyzed for differences. The program used for this analysis is the electromagnetic analysis Maxwell program. As a result, it was confirmed that the bifilar-meander-type winding method is superior to the conventional bifilar-helical and bifilar-spiral types.

Funder

Chosun University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference23 articles.

1. KEITI (Korea Environmental Industry and Technology Institute) (2015). Emissions Reduction through the Upgrade of Coal-Fired Power Plants, KEITI. KONETIC Overseas Investigation Report.

2. ABB (2014). ABB Review—60 Years of HVDC, ABB.

3. Hitachi ABB Power Grids (2021). NordLink HVDC Interconnector-Changing European Power Landscape, Hitachi ABB Power Grids.

4. Callavik, M., Lundberg, P., and Hansson, O. (2015). ABB White Paper, ABB.

5. Pei, X., Cwikowski, O., Vilchis-Rodriguez, D.S., Barnes, M., Smith, A.C., and Shuttleworth, R. (2016, January 23–26). A review of technologies for MVDC circuit breakers. Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3