Effect of Centrifugal Force on Power Output of a Spin-Coated Poly(Vinylidene Fluoride-Trifluoroethylene)-Based Piezoelectric Nanogenerator

Author:

Jeong Dong Geun1,Singh Huidrom Hemojit1,Kim Mi Suk1,Jung Jong Hoon1ORCID

Affiliation:

1. Department of Physics, Inha University, Incheon 22212, Republic of Korea

Abstract

While poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) film is an excellent piezoelectric material for mechanical energy harvesting, the piezoelectric output varies considerably with the spin coating conditions. Herein, we reported a systematic evaluation of the structural, electrical, mechanical, and microstructural properties of spin-coated P(VDF-TrFE) films obtained at various distances from the center, as well as under different rotational speeds. With increasing distance, the remnant polarization, dielectric constant, and crystallinity of the films increased, which resulted in enhanced piezoelectric power at the largest distance. With increasing rotational speed, the remnant polarization, dielectric constant, and crystallinity of the films initially increased and then decreased, while the Young’s modulus continuously increased. This resulted in an enhanced piezoelectric power at a given rotational speed. The piezoelectric power is proportional to the remnant polarization and inversely proportional to the Young’s modulus. The highest (2.1 mW) and lowest (0.5 mW) instantaneous powers were obtained at the largest (1.09 μC/cm2·GPa−1) and smallest (0.60 μC/cm2·GPa−1) value of remnant polarization over Young’s modulus, respectively. We explain these behaviors in terms of the centrifugal force-induced shear stress and grain alignment, as well as the thickness-dependent β-phase crystallization and confinement. This work implies that the spin coating conditions of distance and rotational speed should be optimized for the enhanced power output of spin-coated P(VDF-TrFE)-based piezoelectric nanogenerators.

Funder

Inha University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3