A Multi-Sensor Stochastic Energy-Based Vibro-Localization Technique with Byzantine Sensor Elimination

Author:

Ambarkutuk Murat1ORCID,Alajlouni Sa’ed2ORCID,Tarazaga Pablo A.3ORCID,Plassmann Paul E.1ORCID

Affiliation:

1. The Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA 24061, USA

2. Department of Mechatronics Engineering, Faculty of Engineering, The Hashemite University, Zarqa 13133, Jordan

3. J. Mike Walker ‘66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA

Abstract

This paper presents an occupant localization technique that determines the location of individuals in indoor environments by analyzing the structural vibrations of the floor caused by their footsteps. Structural vibration waves are difficult to measure as they are influenced by various factors, including the complex nature of wave propagation in heterogeneous and dispersive media (such as the floor) as well as the inherent noise characteristics of sensors observing the vibration wavefronts. The proposed vibration-based occupant localization technique minimizes the errors that occur during the signal acquisition time. In this process, the likelihood function of each sensor—representing where the occupant likely resides in the environment—is fused to obtain a consensual localization result in a collective manner. In this work, it becomes evident that the above sources of uncertainties can render certain sensors deceptive, commonly referred to as “Byzantines.” Because the ratio of Byzantines among the set sensors defines the success of the collective localization results, this paper introduces a Byzantine sensor elimination (BSE) algorithm to prevent the unreliable information of Byzantine sensors from affecting the location estimations. This algorithm identifies and eliminates sensors that generate erroneous estimates, preventing the influence of these sensors on the overall consensus. To validate and benchmark the proposed technique, a set of previously conducted controlled experiments was employed. The empirical results demonstrate the proposed technique’s significant improvement (3~0%) over the baseline approach in terms of both accuracy and precision.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine learning-based gait health monitoring for multi-occupant smart homes;Internet of Things;2024-07

2. Probabilistic Estimation of Cadence and Walking Speed From Floor Vibrations;IEEE Journal of Translational Engineering in Health and Medicine;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3