Fragmentation of Multiply Charged C10H8 Isomers Produced in keV Range Proton Collision

Author:

Vinitha Meloottayil V.1ORCID,Bhatt Pragya2,Safvan Cholakka P.2ORCID,Vig Sarita3ORCID,Kadhane Umesh R.1ORCID

Affiliation:

1. Department of Physics, Indian Institute of Space Science and Technology, Thiruvanathapuram 695 547, India

2. Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067, India

3. Department of Earth and Space Science, Indian Institute of Space Science and Technology, Trivandrum 695 547, India

Abstract

The dissociation of multiply charged C10H8 isomers produced in fast proton collisions (velocities between 1.41 and 2.4 a.u.) is discussed in terms of their fundamental molecular dynamics, in particular the processes that produce different carbon clusters in such a collision. This aspect is assessed with the help of a multi-hit analysis of daughter ions detected in coincidence with the elimination of H+ and CHn+ (n = 0 to 3). The elimination of H+/C+ is found to be significantly different from CH3+ loss. The loss of CH3+ proceeds through a cascade of momentum-correlated dissociations with the formation of heavy ions such as C9H5+, C9H52+ and C7H3+. The structure of such large fragment ions is predicted with the help of their calculated ground state electronic energies and the multi-hit time-of-flight (ToF) correlation between the second and third hit fragments if detected. Furthermore, we report experimentally the super-dehydrogenation of naphthalene and azulene targets, with evidence of complete dehydrogenation in a single collision.

Publisher

MDPI AG

Subject

Condensed Matter Physics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3