Adaptive Under-Frequency Load Shedding Scheme in System Integrated with High Wind Power Penetration: Impacts and Improvements

Author:

Li Shun,Tang FeiORCID,Shao Youguo,Liao Qingfen

Abstract

As the requirements of economical operation and reliability on power grid are enhanced gradually nowadays, the existing under frequency load shedding (UFLS) scheme is not quite fit for the modern power system that integrates high wind power. In this paper, the impacts of high wind power penetration on the UFLS are discussed thoroughly. A novel adaptive load shedding (LS) scheme is presented taking the high wind power penetration into account. In the proposed scheme, the equivalent inertia constant (EIC) is calculated accurately to improve the power deficit accuracy so as to reduce the error of LS. The dynamic correction of power deficit is able to solve the negative effects of the wind power output random reduction/the wind generator tripping. Besides, the locking criterion is capable of avoiding the influences of the wind power output random increase on the LS, thus cutting down the LS costs and even preventing the frequency overshoot. Moreover, in terms of the LS parameters setting, the coordination of the low frequency protection of the wind generator and the frequency threshold is addressed. The location and capacity model of LS, which is based on the load characteristics, can ameliorate the frequency recovery process. Finally, the validity and robustness of the proposed scheme are verified in the simulations on the IEEE-39 bus system with high wind power penetration.

Funder

the Chinese National Natural Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference26 articles.

1. Renewable Energy: Progressing towards the 2020 Target http://www.docin.com/p-1774315664.html

2. Integration of Distributed PV in Existing and Future UFLS Schemes

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3