Water Colour Changes in High-Elevation Alpine Lakes during 2017–2022: A Case Study of the Upper Orco Valley Catchment

Author:

Matta Erica12ORCID,Bresciani Mariano2ORCID,Giardino Claudia23ORCID,Chiarle Marta1ORCID,Nigrelli Guido1ORCID

Affiliation:

1. Research Institute for Geo-Hydrological Protection, (IRPI-CNR), National Research Council of Italy, 10135 Torino, Italy

2. Institute for the Electromagnetic Sensing of the Environment, (IREA-CNR), National Research Council of Italy, 20133 Milano, Italy

3. National Biodiversity Future Center (NBFC), 90133 Palermo, Italy

Abstract

The water resource is severely compromised by climate change, and its availability and quality can no longer be taken for granted, even in places considered pristine, such as mountains. In this study, we evaluated the water colour variability of three artificial mountain lakes located in a relatively small basin (Western Italian Alps) at high elevations, and related this variability to the local climate conditions of the hydrological basin to which they belong. We estimated the dominant wavelength (DW) of lake water from Sentinel-2 acquisitions for the period 2017–2022, performing a chromaticity analysis. We correlated DW with climatic parameters recorded by two automated weather stations. Average DW varies from 497 nm of Serrù Lake and Agnel Lake to 512 nm of Lake Ceresole, where DW varies seasonally (variation of 75–100 nm in one year). During April–July, the DW of Lake Ceresole is significative correlated with air temperatures and snow cover (−0.8 and +0.8, respectively). During August–October, the relationship with temperature decreases to −0.5, and a correlation of 0.5 with the amount of rainfall appears. This work shows that mountain lake waters can exhibit variable quality (expressed here by water colour) in response to meteorological and hydrological conditions and events.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3