Abstract
Seed dormancy, an important adaptive trait that governs germination timing, is endogenously controlled by phytohormones and genetic factors. DELAY OF GERMINATION 1 (DOG1) is the vital genetic regulator of dormancy, significantly affecting the expression of numerous ABA and GA metabolic genes. However, whether DOG1 could influence the expression of other phytohormone-related genes is still unknown. Here, we comprehensively investigated all well-documented hormone-related genes which might be affected in dog1–2 dry or imbibed seeds by using whole-transcriptome sequencing (RNA-seq). We found that DOG1 could systematically control the expression of phytohormone-related genes. An evident decrease was observed in the endogenous signal intensity of abscisic acid (ABA) and indole-3-acetic acid (IAA), while a dramatic increase appeared in that of gibberellins (GA), brassinosteroids (BR), and cytokinin (CK) in the dog1–2 background, which may contribute considerably to its dormancy-deficient phenotype. Collectively, our data highlight the role of DOG1 in balancing the expression of phytohormone-related genes and provide inspirational evidence that DOG1 may integrate the phytohormones network to control seed dormancy.
Funder
National Natural Science Foundation of China
Key-Area Research and Development Program of Guangdong Province
China Postdoctoral Science Foundation
Science, Technology and Innovation Commission of Shenzhen Municipality
Dapeng New District Science and Technology Program
Subject
Microbiology (medical),Molecular Biology,General Medicine,Microbiology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献