Visualization Simulation of Branch Fractures Based on Internal Structure Reconstruction

Author:

Yang Meng12,Zhang Yi1,Xi Benye3ORCID

Affiliation:

1. School of Information Science and Technology, Beijing Forestry University (BFU), Qinghua East Road 35, Haidian District, Beijing 100083, China

2. Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China

3. The College of Forestry, Beijing Forestry University (BFU), Qinghua East Road 35, Haidian District, Beijing 100083, China

Abstract

This paper presents a visualization algorithm for wood fracture simulation based on wood science and wood internal structure reconstruction. The algorithm can simulate a reasonable and realistic wood fracture effect. First, the 3D point-cloud data of the bark structure are obtained using a laser scanner, and the cross-section of the branch is obtained by voxelization of the surface mesh model. Then, the outer contour of the cross-section is shrunk inward to reconstruct the annual rings and wood fiber bundles, and reasonable internal structures of branch 3D models are generated. The internal structure consists of a hierarchical model composed of several ring-like annual rings, and each annual ring is divided into a series of continuous fan rings. On the basis of the reconstruction results, the wood fracture surface model generated by the parameter control can be mapped to the irregularly shaped 3D branch model. In this research, the internal structure of branches and the shape of annual rings on the fracture surface of branches are analyzed to provide a reliable fracture model for different branch fractures of trees. In addition, the realistic fractured tree branch model generated by this algorithm can be widely applied in fields such as animation film special effects, game scene simulation, virtual reality scene construction, and mechanical research on broken tree branches.

Funder

the National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3