Prototyping and Study of Mesh Turbomachinery Based on the Euler Turbine

Author:

Sazonov Yuri Appolonievich,Mokhov Mikhail Albertovich,Gryaznova Inna Vladimirovna,Voronova Victoria Vasilievna,Mulenko Vladimir Valentinovich,Tumanyan Khoren Arturovich,Frankov Mikhail Alexandrovich,Balaka Nikolay Nikolaevich

Abstract

This paper presents a scientific development aimed at improving the efficiency of turbomachines through the joint use of rotary-vane and vortex workflows. In the well-known Euler turbine, the rotor flow channels represent a set of curved pipes. The authors propose to consider in more detail the possibilities of using such rotating pipes in the implementation of an ejection (vortex) workflow. A hybrid pump was considered with the conclusion that its workflow can be described using two Euler equations. The results of computer simulation indicate that hybrid turbomachines are promising. The use of additive technology allowed the creation of micromodels of the Euler turbine with various rotor designs. Laboratory hydraulic tests showed that the liquid inlet to the rotor is possible in pulse mode. Laboratory tests of micromodels using compressed air showed that gas (or liquid) motion through curved pipes could be carried out from the rotor periphery to its center and then back, albeit through another curved pipe. The research results demonstrated that the scientific and technical potential of the Euler turbine is not yet fully unlocked, and research in this direction should continue. The study results are applicable in various industries including the energyeconomy, robotics, aviation, and water transport industries.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference56 articles.

1. PROTOTYPING MESH TURBINE WITH THE JET CONTROL SYSTEM

2. Fundamentals of Calculation and Design of Pump-Ejector Installations;Sazonov,2012

3. Calculation of the minimum drag of lattice wings and their elements and comparison of the calculated results with the experiment at M = 0.6 ÷ 4.0;Konovalova;Air Fleet Tech.,2005

4. Method of determining the full-scale aerodynamic performance of an airplane with lattice wings based on the results of its model wind-channel tests;Drozdov;TsAGI Sci. J.,2002

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3