High-Power Closed-Loop SMPC-Based Photovoltaic System Characterization under Varying Ambient Conditions

Author:

Bharadwaj PallaviORCID,John Vinod

Abstract

Photovoltaic energy generation potential can be tapped with maximum efficacy by characterizing the source behaviour. Characterization refers to the systematic terminal measurement-based PV modeling which can further facilitate output prediction and fault detection. Most of the existing PV characterization methods fail for high-power PV array due to increased thermal losses in electronic components. Here, we propose a switched-mode power converter-based PV characterization setup which is designed with input filter to limit switching ripple entering into PV array under test, thereby enhancing system life and efficiency. The high resonant frequency input filter ensures its compactness with high-speed characterization capability. To further enhance the system performance, a closed-loop current control of the system is designed for high bandwidth and stable phase margins. Variation of the controller parameters under varying ambient conditions of 200–1000 W/m2 irradiation and 25–70 °C temperature is documented and an adaptive PI controller is proposed. Experimental and simulation results validate the high performance of the closed loop operation of the PV characterization at 1.2 kW range power level in real-time field conditions. Compared to the open loop operation, the closed-loop operation eliminates the waveform ringing by 100% during characterization.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning based Source and Load Forecasting for Efficient Microgrid Energy Management System;2023 IEEE 3rd International Conference on Smart Technologies for Power, Energy and Control (STPEC);2023-12-10

2. High Performance Switched Moded Power Conversion for Photovoltaic Integrated Hydrogen based Energy System;2023 IEEE 3rd International Conference on Smart Technologies for Power, Energy and Control (STPEC);2023-12-10

3. Fuzzy Control for Simplified Lumbar Spine Robotic Mechanism Motion;2023 IEEE International Conference on Networking, Sensing and Control (ICNSC);2023-10-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3