The Glycan Ectodomain of SARS-CoV-2 Spike Protein Modulates Cytokine Production and Expression of CD206 Mannose Receptor in PBMC Cultures of Pre-COVID-19 Healthy Subjects

Author:

Barbati Cristiana1,Bromuro Carla1,Vendetti Silvia1,Torosantucci Antonella1,Cauda Roberto2ORCID,Cassone Antonio3,Palma Carla1ORCID

Affiliation:

1. Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy

2. Dipartimento Salute e Bioetica, Sezione Malattie Infettive, Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136 Rome, Italy

3. Polo d’Innovazione della Genomica, Genetica e Biologia, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy

Abstract

The ability of recombinant, SARS-CoV-2 Spike (S) protein to modulate the production of two COVID-19 relevant, pro-inflammatory cytokines (IL-6 and IFN-γ) in PBMC cultures of healthy, pre-COVID-19 subjects was investigated. We observed that cytokine production was largely and diversely modulated by the S protein depending on antigen or mitogen stimulation, as well as on the protein source, insect (S-in) or human (S-hu) cells. While both proteins co-stimulated cytokine production by polyclonally CD3-activated T cells, PBMC activation by the mitogenic lectin Concanavalin A (Con A) was up-modulated by S-hu protein and down-modulated by S-in protein. These modulatory effects were likely mediated by the S glycans, as demonstrated by direct Con A-S binding experiments and use of yeast mannan as Con A binder. While being ineffective in modulating memory antigenic T cell responses, the S proteins and mannan were able to induce IL-6 production in unstimulated PBMC cultures and upregulate the expression of the mannose receptor (CD206), a marker of anti-inflammatory M2 macrophage. Our data point to a relevant role of N-glycans, particularly N-mannosidic chains, decorating the S protein in the immunomodulatory effects here reported. These novel biological activities of the S glycan ectodomain may add to the comprehension of COVID-19 pathology and immunity to SARS-CoV-2.

Funder

Italian Ministry of Health

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3