Numerical Investigation of Water Inflow Characteristics in a Deep-Buried Tunnel Crossing Two Overlapped Intersecting Faults

Author:

Wu Jing1ORCID,Lu Yani1,Wu Li2,Han Yanhua1,Sun Miao2

Affiliation:

1. Faculty of Civil Engineering, Hubei Engineering University, Xiaogan 432000, China

2. Engineering Research Center of Rock-Soil Drilling & Excavation and Protection, Ministry of Education, China University of Geosciences, Wuhan 430074, China

Abstract

Because fault core zones and damage zones overlap, when a tunnel crosses the intersecting faults the groundwater flow characteristics of the tunnel-surrounding rock will be different compared to that from a single fault. By using the theory of “Three-district zoning of faults”, an improved Darcy–Brinkman numerical model for a tunnel crossing the intersecting faults was established in this work. Based on the relative vertical positions between the tunnel axis and the intersection center of faults, the underground water seepage field was analyzed at steady-state by solving the improved Darcy–Brinkman equation for the host rock zone and the fault zone. The simulation results show that the flow field around the tunnel is almost unaffected by the relative positions but is mainly dependent on the relative heights. Specifically, the relative position variation of the fault intersection to the tunnel axis has little effect on the pore pressure. In terms of flow velocity, regardless of the relative positions of the fault intersection and the tunnel, the maximum value of flow velocity almost occurs near the bottom of the tunnel excavation face and consistently displays high values within a small distance ahead of the excavation face, and then decreases quickly as the distance increases. Furthermore, the flow velocity changes minimally in the host rock. It will likely encounter the maximum water inflow rate when the tunnel excavation face passes through the intersection. The numerical simulation results can provide a practical reference for predicting water inflow into deep-buried tunnels passing through overlapped intersecting faults.

Funder

National Natural Science Foundation of China

Hubei Natural Science Foundation of Hubei Province of China

Foundation of Engineering Research Center of Rock-Soil Drilling & Excavation and Protection

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3