Spatial Interpolation of Soil Temperature and Water Content in the Land-Water Interface Using Artificial Intelligence

Author:

Imanian Hanifeh1ORCID,Shirkhani Hamidreza12,Mohammadian Abdolmajid1ORCID,Hiedra Cobo Juan2,Payeur Pierre3ORCID

Affiliation:

1. Department of Civil Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada

2. National Research Council Canada, Ottawa, ON K1A 0R6, Canada

3. School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada

Abstract

The distributed measured data in large regions and remote locations, along with a need to estimate climatic data for point sites where no data have been recorded, has encouraged the implementation of spatial interpolation techniques. Recently, the increasing use of artificial intelligence has become a promising alternative to conventional deterministic algorithms for spatial interpolation. The present study aims to evaluate some machine learning-based algorithms against conventional strategies for interpolating soil temperature data from a region in southeast Canada with an area of 1000 km by 550 km. The radial basis function neural networks (RBFN) and the deep learning approach were used to estimate soil temperature along a railroad after the spline deterministic spatial interpolation method failed to interpolate gridded soil temperature data on the desired locations. The spline method showed weaknesses in interpolating soil temperature data in areas with sudden changes. This limitation did not improve even by increasing the spline nonlinearity. Although both radial basis function neural networks and the deep learning approach had successful performances in interpolating soil temperature data even in sharp transition areas, deep learning outperformed the former method with a normalized RMSE of 9.0% against 16.2% and an R-squared of 89.2% against 53.8%. This finding was confirmed in the same investigation on soil water content.

Funder

National Research Council Canada

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3