Third Body Wear of UHMWPE-on-PEEK-OPTIMA™

Author:

Cowie Raelene M.ORCID,Pallem Naveen Manikya,Briscoe Adam,Jennings Louise M.ORCID

Abstract

PEEK-OPTIMA™ is being considered as an alternative to cobalt chrome (CoCr) in the femoral component of total knee replacements. To date, investigations of ultra-high molecular weight polyethylene (UHMWPE)-on-PEEK have shown an equivalent wear rate to conventional implant materials under standard conditions. In this study, the third body wear performance of UHMWPE-on-PEEK was directly compared to UHMWPE-on-CoCr in a series of pin-on-plate studies using two approaches for third body damage. Damage simulation with particles of bone cement showed a significant (p < 0.001), four-fold increase in the mean surface roughness of PEEK plates compared to CoCr. However, wear simulation against the damaged plates showed no significant difference in the wear of UHMWPE pins against the different materials (p = 0.59), and a polishing effect by the pin against the PEEK plates was observed. Scratching PEEK and CoCr counterfaces with a diamond stylus to create scratches representative of severe third body damage (4 µm lip height) resulted in a significantly higher (p = 0.01) wear of UHMWPE against CoCr compared to PEEK and again, against PEEK plates, polishing by the UHMWPE pin led to a reduction in scratch lip height. This study shows that in terms of its wear performance under third body wear/damage conditions, UHMWPE-on-PEEK differs from conventional knee replacement materials.

Funder

Wellcome Trust

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3