Next-Hop Relay Selection for Ad Hoc Network-Assisted Train-to-Train Communications in the CBTC System

Author:

Ma Sixing1,Li Meng1ORCID,Yang Ruizhe1,Sun Yang1ORCID,Wang Zhuwei1ORCID,Si Pengbo1

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

Abstract

In the communication-based train control (CBTC) system, traditional modes such as LTE or WLAN in train-to-train (T2T) communication face the problem of a complex and costly deployment of base stations and ground core networks. Therefore, the multi-hop ad hoc network, which has the characteristics of being relatively flexible and cheap, is considered for CBTC. However, because of the high mobility of the train, it is likely to move out of the communication range of wayside nodes. Moreover, some wayside nodes are heavily congested, resulting in long packet queuing delays that cannot meet the transmission requirements. To solve these problems, in this paper, we investigate the next-hop relay selection problem in multi-hop ad hoc networks to minimize transmission time, enhance the network throughput, and ensure the channel quality. In addition, we propose a multiagent dueling deep Q learning (DQN) algorithm to optimize the delay and throughput of the entire link by selecting the next-hop relay node. The simulation results show that, compared with the existing routing algorithms, it has obvious improvement in the aspects of delay, throughput, and packet loss rate.

Funder

Beijing Natural Science Foundation

Foundation of the Beijing Municipal Commission of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3