Recent Progress in Self-Powered Sensors Based on Liquid–Solid Triboelectric Nanogenerators

Author:

Nguyen Quang Tan1ORCID,Vu Duy Linh2,Le Chau Duy34,Ahn Kyoung Kwan2ORCID

Affiliation:

1. Graduate School of Mechanical Engineering, University of Ulsan, Daehakro 93, Nam-gu, Ulsan 44610, Republic of Korea

2. School of Mechanical Engineering, University of Ulsan, Daehakro 93, Nam-gu, Ulsan 44610, Republic of Korea

3. Faculty of Electrical and Electronic Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 700000, Vietnam

4. Vietnam National University Ho Chi MInh City, Linh Trung Ward, Ho Chi Minh City 700000, Vietnam

Abstract

Recently, there has been a growing need for sensors that can operate autonomously without requiring an external power source. This is especially important in applications where conventional power sources, such as batteries, are impractical or difficult to replace. Self-powered sensors have emerged as a promising solution to this challenge, offering a range of benefits such as low cost, high stability, and environmental friendliness. One of the most promising self-powered sensor technologies is the L–S TENG, which stands for liquid–solid triboelectric nanogenerator. This technology works by harnessing the mechanical energy generated by external stimuli such as pressure, touch, or vibration, and converting it into electrical energy that can be used to power sensors and other electronic devices. Therefore, self-powered sensors based on L–S TENGs—which provide numerous benefits such as rapid responses, portability, cost-effectiveness, and miniaturization—are critical for increasing living standards and optimizing industrial processes. In this review paper, the working principle with three basic modes is first briefly introduced. After that, the parameters that affect L–S TENGs are reviewed based on the properties of the liquid and solid phases. With different working principles, L–S TENGs have been used to design many structures that function as self-powered sensors for pressure/force change, liquid flow motion, concentration, and chemical detection or biochemical sensing. Moreover, the continuous output signal of a TENG plays an important role in the functioning of real-time sensors that is vital for the growth of the Internet of Things.

Funder

Ministry of Science and ICT

Ministry of Education

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3