Evaluation of New PCM/PV Configurations for Electrical Energy Efficiency Improvement through Thermal Management of PV Systems

Author:

Ahmad Abdalqader,Navarro Helena,Ghosh SaikatORCID,Ding Yulong,Roy Jatindra Nath

Abstract

Photovoltaic modules during sunny days can reach temperatures 35 °C above the ambient temperature, which strongly influences their performance and electrical efficiency as power losses can be up to −0.65%/°C. To minimize and control the PV panel temperature, the scientific community has proposed different strategies and innovative approaches, one of them through passive cooling with phase change materials (PCM). However, further investigation, including the effects of geometric shape, insulation, phase change temperature, ambient temperature, and solar radiation on the PV module power output and efficiency, needs further optimization and research. Therefore, the current work aims to investigate several system configurations and different PCMs (RT42, RT31, and RT25) and compare the system with and without insulation through computational fluid dynamic (CFD) tools. The final goal is to optimise and control the temperature of PV modules and evaluate their system efficiency and energy generation. The results showed that compared with a rectangular shape of the PCM container, the trapezoid-one exhibits a considerably better cooling performance with a negligible variation of the PV temperature, even when the melting temperature of the PCM was lower than the average ambient temperature. Moreover, the study showed that having insulation in the PCM container increases the amount of PCM needed, compared with no insulation case, and the increased amount depends on the PCM type. The newly proposed PV/PCM system configuration shows an efficiency and power generation enhancement of 17% and 14.6%, respectively, at peak times.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3