An Effective Acoustic Impedance Imaging Based on a Broadband Gaussian Beam Migration

Author:

Liu Shaoyong,Zhu Wenting,Yan Zhe,Xu Peng,Wang Huazhong

Abstract

The estimation of the subsurface acoustic impedance (AI) model is an important step of seismic data processing for oil and gas exploration. The full waveform inversion (FWI) is a powerful way to invert the subsurface parameters with surface acquired seismic data. Nevertheless, the strong nonlinear relationship between the seismic data and the subsurface model will cause nonconvergence and unstable problems in practice. To divide the nonlinear inversion into some more linear steps, a 2D AI inversion imaging method is proposed to estimate the broadband AI model based on a broadband reflectivity. Firstly, a novel scheme based on Gaussian beam migration (GBM) is proposed to produce the point spread function (PSF) and conventional image of the subsurface. Then, the broadband reflectivity can be obtained by implementing deconvolution on the image with respect to the calculated PSF. Assuming that the low-wavenumber part of the AI model can be deduced by the background velocity, we implemented the AI inversion imaging scheme by merging the obtained broadband reflectivity as the high-wavenumber part of the AI model and produced a broadband AI result. The developed broadband migration based on GBM as the computational hotspot of the proposed 2D AI inversion imaging includes only two GBM and one Gaussian beam demigraton (Born modeling) processes. Hence, the developed broadband GBM is more efficient than the broadband imaging using the least-squares migrations (LSMs) that require multiple iterations (every iteration includes one Born modeling and one migration process) to minimize the objective function of data residuals. Numerical examples of both synthetic data and field data have demonstrated the validity and application potential of the proposed method.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3