A New Thermal-Solar Field Configuration: The Rotatory Fresnel Collector or Sundial

Author:

Cano-Nogueras Javier,Muñoz-Antón JavierORCID,Martinez-Val José M.

Abstract

A new type of Fresnel array has been devised and constructed as an answer to the need to reduce the investment costs of solar thermal collectors, without jeopardizing their efficiency in capturing solar radiation at high temperatures. The array of mirror bands is fixed onto a horizontal platform, which rotates around a virtual vertical axis, so that the sun is in the extrapolated vertical plane of symmetry of the array. The receptor central line is also placed in said plane, and it is physically made of at least one tube at each side of the plane. The geometrical relation between the mirrors and the receptor is therefore fixed. The platform rotates with the same speed as that of the sunlight’s azimuthal component. On the contrary, the angle of incidence of the sunlight on the mirrors changes as the sun rises and declines in its daily apparent motion, but this effect does not disturb the radiation concentration kinematics, although it induces a shift along the receptor. This is a new configuration based on the use of simple and cheap flat mirrors to obtain circular cylindrical mirrors. These mirrors are made of originally flat mirrors that are bent by applying an inexpensive and simple bending technique patented by our research group. The radius of curvature of each mirror is tuned to the distance from the mirror to the receiver central line. The integration of different scientific domains (such as structural analysis) and elementary technologies (such as 3D printing) in this innovative solar radiation concentrator and receiver can lead to a large reduction in costs. Nevertheless, the first experimental campaign has shown additional problems in the receiver configuration, which should be addressed in a next stage of research. This paper explains the methodology used and procedures in the development of the first prototype of the Sundial.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference63 articles.

1. World Meteorological Organizationhttps://public.wmo.int/en/sun’s-impact-earth

2. Solar Radiation and Daylight Models (with Software Available from Companion Web Site);Muneer,2004

3. El Modelo Energético Español;Castells,2012

4. “Green” path from fossil-based to hydrogen economy: An overview of carbon-neutral technologies

5. Solar radiation concentration features in Linear Fresnel Reflector arrays

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3