Effect of Environmental Temperature on the Insulating Performance of Epoxy/MgO Nanocomposites

Author:

Ge Guanghui,Tang Yongzhe,Li Yuxia,Huang Liangsong

Abstract

This article reports on the development of nano-MgO/epoxy resin composites with various mass ratios via a solution blending method. The influence of MgO nanofillers on the thermal properties and the effect of environmental temperature on the insulating properties of the composite material were analyzed. The results show that the thermal conductivity of the composites increased with an increasing MgO nanofiller content. Compared with the pure epoxy resin, the thermal conductivity increased by 75% when the content of MgO nanoparticles was 7%. The volume resistivity first increased and then decreased with an increasing doping concentration. The volume resistivity increased by 26.8% in comparison with the pure epoxy resin when the content of MgO nanoparticles was 1%, while its dielectric constant and dielectric loss increased with temperature. In addition, the dielectric constant increased and the dielectric loss first decreased and then increased with an increasing MgO nanoparticle content. Moreover, the MgO composites changed from a glassy to a rubbery state, and the breakdown strength was significantly reduced with an increased temperature. When the temperature was higher than the glass transition temperature, the breakdown strength decreased by 51.3% compared with the maximum breakdown strength at 20 °C. As the content of MgO nanoparticles increased, the breakdown strength of the composite first increased and then decreased. The highest breakdown strength was achieved when the content of MgO nanoparticles was 1%, which was 11.1% higher than that of the pure epoxy resin. It was concluded that the MgO nanofillers can significantly improve the thermal properties of epoxy composites and their insulation performance at high temperatures.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3