Defragmenting Research Areas with Knowledge Visualization and Visual Text Analytics

Author:

Benito-Santos AlejandroORCID,Therón Sánchez RobertoORCID

Abstract

The increasing specialization of science is motivating the fragmentation of traditional and well-established research areas into interdisciplinary communities of practice that focus on cooperation between experts to solve problems in a wide range of domains. This is the case of problem-driven visualization research (PDVR), in which groups of scholars use visualization techniques in different application domains such as the digital humanities, bioinformatics, sports science, or computer security. In this paper, we employ the findings obtained during the development of a novel visual text analytics tool we built in previous studies, GlassViz, to automatically detect interesting knowledge associations and groups of common interests between these communities of practice. Our proposed method relies on the statistical modeling of author-assigned keywords to make its findings, which are demonstrated in two use cases. The results show that it is possible to propose interactive, semisupervised visual approaches that aim at defragmenting a body of research using text-based, automatic literature analysis methods.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference43 articles.

1. Bridging the Gap of Domain and Visualization Experts with a Liaison;Simon,2015

2. A Multi-Level Typology of Abstract Visualization Tasks

3. Learning from architects:the difference between knowledge visualization and information visualization

4. GlassViz: Visualizing Automatically-Extracted Entry Points for Exploring Scientific Corpora in Problem-Driven Visualization Research. 2020 IEEE Visualization Conference (VIS), 2020, p. To appear in IEEE VIS 2020 Conference Proceedingshttps://arxiv.org/abs/2009.02094

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3