Relationship between Aspect Ratio and Crack Density in Porous-Cracked Rocks Using Experimental and Optimization Methods

Author:

Yoon Hyung-Koo

Abstract

Aspect ratio and crack density are essential parameters to understand the physical properties of porous-cracked rocks, although it is difficult to independently determine each parameter, as both are closely linked. The objective of this study is to propose a relationship between aspect ratio and crack density that can be used to solve for each through experimental and optimization methods. Two different constitutive equations are solved to create expressions explicitly defining aspect ratio and crack density, with all remaining variables arranged as functions of elastic wave velocity. Ten core specimens extracted from construction sites, with diameters of 46 mm, are subjected to artificial weathering to identify how their crack density and aspect ratio evolved with time. The artificial weathering process consisted of chemical and physical weathering cycles using saline solution and slake durability tests, respectively. Compressional and shear wave velocities are measured at every weathering step, and both aspect ratio and crack density are calculated. The random forest as an optimization method is selected to define the important score among input variables. The calculated aspect ratios and crack densities are converted into a crack porosity, the reliability of which is verified through percentage of crack porosity (~6%) in total porosity. This study demonstrates that the relationship between aspect ratio and crack density is robust and has wide-ranging applications in determining individual aspect ratio and crack density parameters in porous-cracked rock.

Funder

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3