Audio–Visual Speech Recognition Based on Dual Cross-Modality Attentions with the Transformer Model

Author:

Lee Yong-HyeokORCID,Jang Dong-WonORCID,Kim Jae-BinORCID,Park Rae-HongORCID,Park Hyung-MinORCID

Abstract

Since attention mechanism was introduced in neural machine translation, attention has been combined with the long short-term memory (LSTM) or replaced the LSTM in a transformer model to overcome the sequence-to-sequence (seq2seq) problems with the LSTM. In contrast to the neural machine translation, audio–visual speech recognition (AVSR) may provide improved performance by learning the correlation between audio and visual modalities. As a result that the audio has richer information than the video related to lips, AVSR is hard to train attentions with balanced modalities. In order to increase the role of visual modality to a level of audio modality by fully exploiting input information in learning attentions, we propose a dual cross-modality (DCM) attention scheme that utilizes both an audio context vector using video query and a video context vector using audio query. Furthermore, we introduce a connectionist-temporal-classification (CTC) loss in combination with our attention-based model to force monotonic alignments required in AVSR. Recognition experiments on LRS2-BBC and LRS3-TED datasets showed that the proposed model with the DCM attention scheme and the hybrid CTC/attention architecture achieved at least a relative improvement of 7.3% on average in the word error rate (WER) compared to competing methods based on the transformer model.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference44 articles.

1. Techniques for Noise Robustness in Automatic Speech Recognition,2012

2. Distant Speech Recognition;Wölfel,2009

3. Environmental Robustness;Droppo,2008

4. Bayesian feature enhancement using independent vector analysis and reverberation parameter re-estimation for noisy reverberant speech recognition

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3