Abstract
Massive heterogeneous big data residing at different sites with various types and formats need to be integrated into a single unified view before starting data mining processes. Furthermore, in most of applications and research, a single big data source is not enough to complete the analysis and achieve goals. Unfortunately, there is no general or standardized integration process; the nature of an integration process depends on the data type, domain, and integration purpose. Based on these parameters, we proposed, implemented, and tested a big data integration framework that integrates big data in the biology domain, based on the domain ontology and using distributed processing. The integration resulted in the same result as that obtained from the local integration. The results are equivalent in terms of the ontology size before the integration; in the number of added items, skipped items, and overlapped items; in the ontology size after the integration; and in the number of edges, vertices, and roots. The results also do not violate any logical consistency rules, passing all the logical consistency tests, such as Jena Ontology API, HermiT, and Pellet reasoners. The integration result is a new big data source that combines big data from several critical sources in the biology domain and transforms it into one unified format to help researchers and specialists use it for further research and analysis.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference69 articles.
1. Introduction;Sakr,2016
2. 3-D Data Management: Controlling Data Volume, Velocity, and Variety, META Group Res. Note 6;Laney;J. Data Anal. Inf. Process.,2001
3. Mining big data
4. Comprehensive analysis of big data variety landscape
5. Understanding the Predictive Analytics Lifecycle;Cordoba,2014
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献