A Framework for Enhancing Big Data Integration in Biological Domain Using Distributed Processing

Author:

Almasoud AmeeraORCID,Al-Khalifa HendORCID,Al-salman AbdulMalik,Lytras MiltiadisORCID

Abstract

Massive heterogeneous big data residing at different sites with various types and formats need to be integrated into a single unified view before starting data mining processes. Furthermore, in most of applications and research, a single big data source is not enough to complete the analysis and achieve goals. Unfortunately, there is no general or standardized integration process; the nature of an integration process depends on the data type, domain, and integration purpose. Based on these parameters, we proposed, implemented, and tested a big data integration framework that integrates big data in the biology domain, based on the domain ontology and using distributed processing. The integration resulted in the same result as that obtained from the local integration. The results are equivalent in terms of the ontology size before the integration; in the number of added items, skipped items, and overlapped items; in the ontology size after the integration; and in the number of edges, vertices, and roots. The results also do not violate any logical consistency rules, passing all the logical consistency tests, such as Jena Ontology API, HermiT, and Pellet reasoners. The integration result is a new big data source that combines big data from several critical sources in the biology domain and transforms it into one unified format to help researchers and specialists use it for further research and analysis.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference69 articles.

1. Introduction;Sakr,2016

2. 3-D Data Management: Controlling Data Volume, Velocity, and Variety, META Group Res. Note 6;Laney;J. Data Anal. Inf. Process.,2001

3. Mining big data

4. Comprehensive analysis of big data variety landscape

5. Understanding the Predictive Analytics Lifecycle;Cordoba,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3