Improving Computer-Aided Cervical Cells Classification Using Transfer Learning Based Snapshot Ensemble

Author:

Chen Wen,Li Xinyu,Gao Liang,Shen WeimingORCID

Abstract

Cervical cells classification is a crucial component of computer-aided cervical cancer detection. Fine-grained classification is of great clinical importance when guiding clinical decisions on the diagnoses and treatment, which remains very challenging. Recently, convolutional neural networks (CNN) provide a novel way to classify cervical cells by using automatically learned features. Although the ensemble of CNN models can increase model diversity and potentially boost the classification accuracy, it is a multi-step process, as several CNN models need to be trained respectively and then be selected for ensemble. On the other hand, due to the small training samples, the advantages of powerful CNN models may not be effectively leveraged. In order to address such a challenging issue, this paper proposes a transfer learning based snapshot ensemble (TLSE) method by integrating snapshot ensemble learning with transfer learning in a unified and coordinated way. Snapshot ensemble provides ensemble benefits within a single model training procedure, while transfer learning focuses on the small sample problem in cervical cells classification. Furthermore, a new training strategy is proposed for guaranteeing the combination. The TLSE method is evaluated on a pap-smear dataset called Herlev dataset and is proved to have some superiorities over the exiting methods. It demonstrates that TLSE can improve the accuracy in an ensemble manner with only one single training process for the small sample in fine-grained cervical cells classification.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3