Automated Bone Age Assessment with Image Registration Using Hand X-ray Images

Author:

Zulkifley Mohd AsyrafORCID,Abdani Siti Raihanah,Zulkifley Nuraisyah Hani

Abstract

One of the methods for identifying growth disorder is by assessing the skeletal bone age. A child with a healthy growth rate will have approximately the same chronological and bone ages. It is important to detect any growth disorder as early as possible, so that mitigation treatment can be administered with less negative consequences. Recently, the most popular approach in assessing the discrepancy between bone and chronological ages is through the subjective protocol of Tanner–Whitehouse that assesses selected regions in the hand X-ray images. This approach relies heavily on the medical personnel experience, which produces a high intra-observer bias. Therefore, an automated bone age prediction system with image registration using hand X-ray images is proposed in order to complement the inexperienced doctors by providing the second opinion. The system relies on an optimized regression network using a novel residual separable convolution model. The regressor network requires an input image to be 299 × 299 pixels, which will be mapped to the predicted bone age through three modules of the Xception network. Moreover, the images will be pre-processed or registered first to a standardized and normalized pose using separable convolutional neural networks. Three steps image registration are performed by segmenting the hand regions, which will be rotated using angle calculated from four keypoints of interest, before positional alignment is applied to ensure the region of interest is located in the middle. The hand segmentation is based on DeepLab V3 plus architecture, while keypoints regressor for angle alignment is based on MobileNet V1 architecture, where both of them use separable convolution as the core operators. To avoid the pitfall of underfitting, synthetic data are generated while using various rotation angles, zooming factors, and shearing images in order to augment the training dataset. The experimental results show that the proposed method returns the lowest mean absolute error and mean squared error of 8.200 months and 121.902 months2, respectively. Hence, an error of less than one year is acceptable in predicting the bone age, which can serve as a good supplement tool for providing the second expert opinion. This work does not consider gender information, which is crucial in making a better prediction, as the male and female bone structures are naturally different.

Funder

Universiti Kebangsaan Malaysia

Ministry of Higher Education Malaysia

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Doctor simulator: Delta-Age-Sex-AdaIn enhancing bone age assessment through AdaIn style transfer;Pediatric Radiology;2024-07-27

2. BELUGA WHALE LION OPTIMIZATION IN DEEP-NETS FOR HUMAN AGE ESTIMATION USING HAND X-RAY;Biomedical Engineering: Applications, Basis and Communications;2024-07-10

3. Deep Learning-Based Bone Age Assessment from Hand X-Rays: An Evaluation and Analysis;2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI);2023-12-21

4. Convolutional Neural Networks for Medical Image Segmentation and Classification: A Review;Journal of Information Systems and Telecommunication (JIST);2023-12-16

5. Bone Age Estimation of Pediatrics by Analyzing Hand X-Rays Using Deep Learning Technique;2023 International Conference on Recent Advances in Information Technology for Sustainable Development (ICRAIS);2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3