Frequency Response of Optically Pumped Magnetometer with Nonlinear Zeeman Effect

Author:

Zhang RuiORCID,Wu TengORCID,Chen JingbiaoORCID,Peng XiangORCID,Guo HongORCID

Abstract

Optically pumped alkali atomic magnetometers based on measuring the Zeeman shifts of the atomic energy levels are widely used in many applications because of their low noise and cryogen-free operation. When alkali atomic magnetometers are operated in an unshielded geomagnetic environment, the nonlinear Zeeman effect may become non-negligible at high latitude and the Zeeman shifts are thus not linear to the strength of the magnetic field. The nonlinear Zeeman effect causes broadening and partial splitting of the magnetic resonant levels, and thus degrades the sensitivity of the alkali atomic magnetometers and causes heading error. In this work, we find that the nonlinear Zeeman effect also influences the frequency response of the alkali atomic magnetometer. We develop a model to quantitatively depict the frequency response of the alkali atomic magnetometer when the nonlinear Zeeman effect is non-negligible and verify the results experimentally in an amplitude-modulated Bell–Bloom cesium magnetometer. The proposed model provides general guidance on analyzing the frequency response of the alkali atomic magnetometer operating in the Earth’s magnetic field. Full and precise knowledge of the frequency response of the atomic magnetometer is important for the optimization of feedback control systems such as the closed-loop magnetometers and the active magnetic field stabilization with magnetometers. This work is thus important for the application of alkali atomic magnetometers in an unshielded geomagnetic environment.

Funder

National Natural Science Foundation of China

National Science Fund for Distinguished Young Scholars

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3