Abstract
In this work Sintered Silicon Carbide (S-SiC) samples have been used to fabricate fiber-optic-coupled pressure sensors. The sensor structure reproduces a low-finesse Fabry–Perot (FP) interferometer. Laser manufacturing of cylindrical S-SiC samples was performed to define the thin membrane geometry of sensors. FP cavity is defined by the end-face of a single mode fiber and the S-SiC diaphragm surface. Hence, pressure is evaluated by measuring the cavity depth by a dedicated optoelectronic system coupled to the single mode fiber. Exploiting the excellent properties of S-SiC, in terms of high hardness, low thermal expansion, and high thermal conductivity, realized devices have been characterized up to 20 MPa. Experimental results demonstrate that produced sensors exhibit a non-linearity around ±0.6%F.S. and a high input dynamics. The all-optic sensing system proposed in this work would represent a good alternative to conventional solutions based on piezoelectric effects, overcoming the drawback related to electromagnetic interference on the acquired signals. In addition, the mechanical characteristics of S-SiC allow the use of the sensor in both automotive and aerospace hostile environments as pressure monitors in combustion engines.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献