Synthesis and Characterization of Spherical Calcium Carbonate Nanoparticles Derived from Cockle Shells

Author:

Hussein Abbas Ibrahim,Ab-Ghani ZuryatiORCID,Che Mat Ahmad Nazeer,Ab Ghani Nur Atikah,Husein Adam,Ab. Rahman Ismail

Abstract

Cockle shells are a natural reservoir of calcium carbonate (CaCO3), which is widely used in bone repair, tissue scaffolds, and the development of advanced drug delivery systems. Although many studies report on the preparation of CaCO3, the development of a nanosized spherical CaCO3 precursor for calcium oxide (CaO) that is suitable to be incorporated in dental material was scarce. Therefore, this study aimed to synthesize a nanosized spherical CaCO3 precursor for CaO derived from cockle shells using a sol–gel method. Cockle shells were crushed to powder form and mixed with hydrochloric acid, forming calcium chloride (CaCl2). Potassium carbonate (K2CO3) was then fed to the diluted CaCl2 to obtain CaCO3. The effect of experimental parameters on the morphology of CaCO3, such as volume of water, type of solvents, feeding rate of K2CO3, and drying method, were investigated using field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractometry (XRD), Brunauer–Emmett–Teller surface area analysis, and thermogravimetric analysis. Optimized CaCO3 was then calcined to form CaO. XRD analysis of CaCO3 nanoparticles was indicative of the formation of a calcite phase. The well-structured spherical shape of CaCO3 was obtained by the optimum condition of the addition of 50 mL of water into CaCl2 in ethanolic solution with a 1 h feeding rate of K2CO3. Less agglomeration of CaCO3 was obtained using a freeze-drying technique with the surface area of 26 m2/g and average particle size of 39 nm. Spherical shaped nanosized CaO (22–70 nm) was also synthesized. The reproducibility, low cost, and simplicity of the method suggest its potential applications in the large-scale synthesis of the nanoparticles, with spherical morphology in an industrial setting.

Funder

Kementerian Sains, Teknologi dan Inovasi

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference53 articles.

1. Synthesis, characterization, and cytocompatibility of potential cockle shell aragonite nanocrystals for osteoporosis therapy and hormonal delivery

2. Calcium carbonate nanoparticles; potential applications in bone and tooth disorders;Maleki;Pharm. Sci.,2015

3. The greener synthesis of nanoparticles

4. Mineral Composition of the Cockle (Anadara granosa) Shells of West Coast of Peninsular Malaysia and It? s Potential as Biomaterial for Use in Bone Repair;Awang-Hazmi;J. Anim. Vet. Adv.,2007

5. Surface-functionalized cockle shell–based calcium carbonate aragonite polymorph as a drug nanocarrier

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3